Thermodynamics of Metal Reactants for Ammonia Synthesis from Steam, Nitrogen and Biomass at Atmospheric Pressure

Ronald Michalsky and Peter H. Pfromm

Dept. of Chemical Engineering, Kansas State University, Manhattan, KS 66506

DOI 10.1002/aic.13717 Published online December 29, 2011 in Wiley Online Library (wileyonlinelibrary.com).

Catalytic ammonia synthesis at approximately 30 MPa and 800 K consumes about 5% of the global annual natural gas production causing significant CO_2 emissions. A conceptual solar thermochemical reaction cycle to produce NH_3 at near atmospheric pressure without natural gas is explored here and compared to solar thermochemical steam/air reforming to provide H₂ used in the Haber-Bosch process for NH₃ synthesis. Mapping of Gibbs free energy planes quantifies the tradeoff between the yield of N₂ reduction via metal nitridation, and NH₃ liberation via steam hydrolysis vs. the temperatures required for reactant recovery from undesirably stable metal oxides. Equilibrium composition simulations suggest that reactants combining an ionic nitride-forming element (e.g., Mg or Ce) with a transition metal (e.g., MgCr₂O₄, MgFe₂O₄, or $MgMoO_4$) may enable the concept near 0.1 MPa (at maximum 64 mol % yield of Mg_3N_2 through nitridation of $MgFe_2O_4$ at 1,300 K, and 72 mol % of the nitrogen in Mg₃N₂ as NH₃ during hydrolysis at 500 K). © 2011 American Institute of Chemical Engineers *AIChE J*, 58: 3203–3213, 2012

Keywords: ammonia, fertilizer, solar energy, thermochemical reaction cycle, low pressure, fossil fuel

Introduction

Agriculture is faced with an increasing demand for production due to a growing and developing world population.¹ The global average nitrogen demand for fertilization is about 2.6 to 2.9 kg nitrogen/year/capita, and this demand is satisfied mainly by ammonia and ammonia-derived materials such as urea.1

The expanded renewable fuel standard (RFS2) requires that in the U.S. the annual use of 3.4×10^7 m³ of biofuel (e.g., from corn or cellulosic biomass) in 2008 is to be increased to about 1.4×10^8 m³ in 2022.²

Ammonia-based fertilizers play a crucial role to satisfy both the demands for food and biofuels. The chemical industry supplies the majority of fertilizers (mainly liquid NH₃, (NH₂)₂CO, NH₄NO₃, (NH₄)₂SO₄, K₂O, P₂O₅, and various mixtures of these materials) to agriculture. The Haber Bosch process introduced at industrial scale in 1913¹ synthesizes the vast majority of the 1.28×10^8 metric tons of the NH₃ produced globally (2001)³ via catalytic synthesis of NH₃ from a stoichiometric mixture of N2 and H2 at 30 MPa and 700-900 K. This requires technologically sophisticated high pressure and high-temperature operations that are capital intensive and dictate the need for large facilities producing at above 1,000 t NH₃/day. The process reaches ideally 22.7 mol % conversion of 1/2 N₂ to NH₃ (estimated via Gibbs free energy minimization, Aspen Plus V7.2). The overall

Nitrogen fixation remains a challenge. The dependence on natural gas, the technically demanding process conditions, the CO₂ emissions, and the economy of scale all motivate continued interest in NH3 synthesis. Potential use of NH3 as a H_2 carrier molecule, ^{8,9} or as a way to store intermittent solar energy ^{10–12} could also be cited as motivation.

Alternatives to the current industrial NH₃ synthesis

Investigated as alternatives to the Haber-Bosch process, NH₃ synthesis at mild conditions in the liquid phase via transition metal coordination complexes¹³ or electrochemical NH₃ synthesis^{14,15} have not yet reached maturity. Only modest conversions caused by a low conductivity in the working electrode, 15 and significant amounts of electrical energy required are concerns for electrochemical NH3 synthesis. NH₃ production from electrolysis of H₂O as attempted in the 1920s has been reported to consume about 90 GJ/t NH₃. 16 This approach would cause a substantial consumption of fossil fuels with the current energy mix to generate electricity (e.g., 49 or 81% of the total electricity in the U.S. or China, respectively, is generated via combustion of coal¹⁷). Solar energy for splitting H_2O to generate $H_2^{-11,12}$ for subsequent

process including H_2 production generates about 2.3 t of fossil-derived CO_2 per t of NH_3 , and expends 2% of the world's energy budget in the form of natural gas (about 28– 37 GJ/t NH₃ in North America^{4,6}). Steam-reforming of coal instead of using natural gas (a frequent practice in India and China) requires even more energy (about 48-166 GJ/t NH₃^{4,7}). This causes generation of 16.7 t CO₂ per t NH₃ produced.4 Production costs of NH₃ (and, thereby, to some extent food or biofuel prices) are tied closely to the volatility of natural gas prices, and also to existing or anticipated CO₂ emission regulations.

Additional Supporting Information may be found in the online version of this

R. Michalsky is NSF IGERT associate in biorefining.

Correspondence concerning this article should be addressed to P. H. Pfromm at

^{© 2011} American Institute of Chemical Engineers

NH₃ synthesis via the Haber-Bosch reaction would alleviate the consumption of natural gas for fertilizer production (84% of the energy required for industrial NH₃ synthesis via the Haber-Bosch process is absorbed in steam reforming with natural gas to produce H₂⁴). The Haber-Bosch process itself and the associated challenges would remain. This approach is further discussed later in the section "Process viability".

From the various inorganic routes proposed in the chemical literature for NH $_3$ synthesis, $^{18-21}$ few received greater attention than Frank and Caro who commercialized around 1910 a three-step process producing NH $_3$ via hydrolysis of calcium cyanamide (a salt-like compound containing reduced nitrogen in form of CN $_2^{2-}$ ions). 16,19,22 To regenerate calcium cyanamide, calcium carbonate (formed during hydrolysis) is heated to form calcium oxide, which is mixed and reacted with coke to yield calcium carbide (about 50 mol % at above 2,100 K 23). The carbide reacts at decreased temperatures with N $_2$ recovering calcium cyanamide. Consumption of coke and the technically demanding process temperatures established with an electric furnace translated into an energy consumption of about 210 GJ/t NH $_3$, which rendered the process economically unattractive.

Thermochemical NH₃ synthesis from a metal nitride/oxide reaction cycle

Based on Serpek's process developed at the beginning of the last century $^{19-21}$, reactive NH_3 synthesis was demonstrated successfully via a two-step solar thermochemical cycle of aluminum nitride hydrolysis around 1,300 K and carbothermal reduction and nitridation of aluminum oxide in the range of 2,023–2,273 K. $^{10,24-26}$ Similar to the calcium cyanamide cycle, this process forms NH_3 near 0.1 MPa without the need of a fossil H_2 source and in the absence of a catalyst. High-temperatures required for reactant recycling can be provided sustainably by use of abundant solar radiation. Intermittently available solar energy is stored advantageously as $NH_3, ^{11,12}$ similar to solar thermochemical H_2 -production via $H_2 O$ -cleavage with a zinc reactant. 11 However, physical containment of these significant reaction temperatures is technically challenging 11,12 and requires sophisticated construction materials and reactor designs. 12,21

Focusing on the simpler concept of a nitride-based NH₃ synthesis at near ambient pressure and without natural gas, this work pursues a reactant composition which allows the nitride-based NH₃ synthesis at temperatures where relatively common materials of construction (e.g., specialty steels and common ceramics) are stable and available as finished objects and machinable stock. The choice of reducing agent (carbonaceous, hydrogen, or none) affecting process economics is discussed briefly.

The following section assesses the viability of a nitride-based NH₃ synthesis process at an overview level. The section concludes with a list of desirable material properties of the reactant that may allow this concept to be competitive with other NH₃ production schemes. Thereafter, a thermodynamic rationale is proposed to guide the reactant choice. With regard to the quantified tradeoff between high-metal oxide reduction temperatures and high yields of N₂ fixation and NH₃ liberation, a few chemical elements that appear promising for the development of a composite reactant are highlighted. Gibbs free energy computations and simulations of chemical equilibrium compositions focus on magnesium-based reactants to point out possible process limitations and options (e.g., the

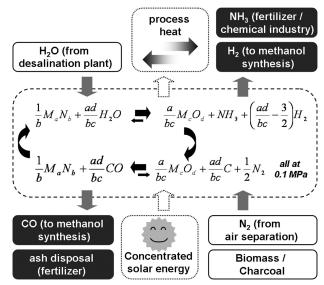


Figure 1. Conceptual approach of Reactive NH₃ Synthesis at atmospheric pressure via a two-step reaction cycle of metal nitride hydrolysis and carbothermal metal oxide nitridation.

possibility to decrease the oxide reduction temperature by doping the reactant with transition metals). Both, direct conversion of the metal oxide to a metal nitride (dependent on the thermodynamic stability of the nitride at elevated temperatures) or intermediate formation of a metal vapor is considered. To aid the direct oxide-to-nitride route, cerium is discussed as a candidate to increase the stability of the nitride.

Process Concept for Solar Thermochemical NH_3 Synthesis

A solar thermochemical cycle producing NH_3 at atmospheric pressure (Figure 1) by metal nitride hydrolysis and subsequent metal reactant recycling using a carbonaceous reducing agent (e.g., biomass) may be written with generalized stoichiometry as

$$\frac{a}{bc}M_cO_d + \frac{ad}{bc}C \leftrightarrow \frac{a}{b}M + \frac{ad}{bc}CO \tag{1}$$

$$\frac{a}{b}M + \frac{1}{2}N_2 \leftrightarrow \frac{1}{b}M_aN_b \tag{2}$$

$$\frac{1}{b}M_aN_b + \frac{ad}{bc}H_2O \leftrightarrow \frac{a}{bc}M_cO_d + NH_3 + \left(\frac{ad}{bc} - \frac{3}{2}\right)H_2 \quad (3)$$

with M being a metal. Lower case letters indicate stoichiometric coefficients. Carbothermal reduction of M_cO_d (Eq. 1) generates a metal capable of breaking the N_2 triple bond via formation of a metal nitride (M_aN_b) (Eq. 2). The nitride is then corroded during nitride hydrolysis (Eq. 3) forming the metal oxide, the desired NH_3 , and possibly H_2 . Oxide reduction (Eq. 1) may occur concurrently with metal nitridation (Eq. 2), see section "Step two: Formation of Mg_3N_2 ".

Process viability

As a first approximation, Figure 2 shows a mass and energy balance-based process analysis for solar thermochemical NH₃ synthesis via an inorganic MgO/Mg₃N₂ cycle (i.e., in Eqs. 1–3, M = Mg, assuming that MgO can be reduced at 1,800 K, see "Promising elements for the nitride formation

Solar thermochemical NH3 synthesis via metal nitride / oxide cycle

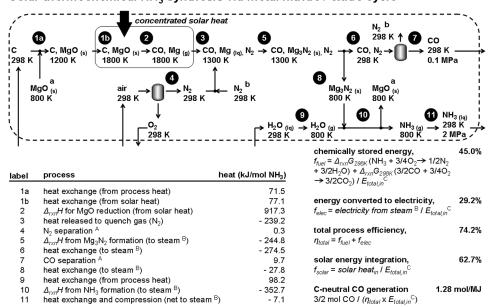


Figure 2. To assess process viability (compare to Figure 3).

All total pressures are 0.1 MPa except if indicated otherwise; critical separation steps are marked with a gray reactor symbol; energy required for pumping is disregarded. (A) as process steam that is required to generate electricity, and (B) steam used to generate electricity at Carnot efficiency; (C) $E_{\text{total,in}} = \text{(solar heat at (1b) and (2)} + \text{lower heating value of the coal used), absorption losses not accounted.}$

and NH_3 liberation step"). A similar analysis for solar-driven steam and air reforming to generate H_2 from water and N_2 from air, followed by the conventional Haber-Bosch synthesis is summarized in Figure 3. Major conclusions are:

In the nitride-based process about 74% of the energy input (absorbed solar heat and charcoal) are recovered in form of chemical energy (45% in NH_3 , CO) and electricity (29%). The large fraction of produced electricity is due to the heat released from exothermic reactions at decreased temperatures (label 5 and 10, Figure 2) limiting heat integration. Also, the high-reduction temperature of MgO leads to an increased

amount of sensible and latent heat in the gaseous products of the oxide reduction step (label 3) which is converted partly to electricity (label 6). The total energy efficiency of the reforming-based process is estimated analogously at 65% (Figure 3). Comparing these figures to the current industrial NH₃ synthesis (ranging from 12% with coal to 69% with natural gas⁴), or the industrial utilization of absorbed solar thermal energy (e.g., about 30% annual average, Andasol power plant, Spain²⁷) or coal (35% without CO₂ capture technology²⁸) to useful energy in form of electricity, both the solar nitride-based and the solar steam reforming/Haber-

Solar thermochemical NH3 synthesis via steam/air reforming and Haber-Bosch

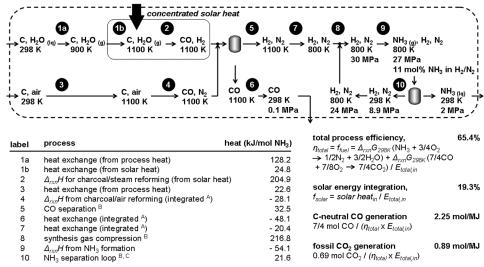


Figure 3. To assess process viability (compare to Figure 2).

(A) Assumed as a completely reversible process, (B) as lower heating value of coal converted at 35% efficiency to electricity, and (C) the synthesis loop (label 10) is computed as succession of isochoric operations recovering a total of > 99.5 mol % of the NH $_3$ formed.

Bosch-based approaches to solar thermochemical NH₃ synthesis appear potentially economically competitive.

The nitride-based process has three products (NH₃, CO, and electricity) vs. two products with the reforming-based process (NH₃ and CO). This couples both processes to the economics of different products and markets. CO may be used for the production of methanol or Fischer-Tropsch chemicals. The dependency on the inherent byproduction of these chemicals can be lowered via reactant optimization for the nitride-based process (e.g., aiming at a decreased ratio of d/b in Eqs. 1–3 or use of alternative reducing agents such as H₂ if the Gibbs free energy of formation of the metal oxide is sufficiently low) or employment/development of alternative technologies for N₂ separation from air for the reforming-based process. The amount of cogenerated electricity in the nitride-based process can be addressed by optimization of the reactive material as well (see previous paragraph).

No fossil resources are consumed with the nitride-based process which thereby avoids inherently the emission of fossil CO₂. The mechanical energy required for the reforming-based process (for compressing the synthesis gas to 30 MPa, label 8, and for the synthesis loop, label 10, Figure 3) leads to fossil CO₂ emissions when generating electricity from the current energy mix (see "Introduction"). Avoidance of these emissions would require the on-site generation of electricity from renewable resources in the future.

Another factor favoring the nitride-based process, 63% of the total energy input to the nitride-process is absorbed solar heat (absorption losses due to re-radiation not accounted for). The reforming-based process integrates only 19% solar heat. This factor can be increased to 44% if all electricity consumed would be generated (at an efficiency of 30%, see before) from solar heat.

These various facets demonstrate that the assessment of the economic competitiveness depends highly on the current economy (e.g., presence or absence of CO₂ emission regulations, cost of heliostats for concentrating solar energy, etc.). An economic analysis (e.g., a net present value analysis) exceeds the scope of this work and will be presented elsewhere. Concerning the nitride-based process, the sensitivity of process efficiency to the reactant choice offers the possibility to optimize via reactant composition as shown later.

Desirable material properties of the reactant

Major criteria for selecting a reactant constituent (M in Eqs. 1–3) are:

- 1. moderate to high-nitridation yields of the metal with acceptable kinetics,
- 2. moderate to high yield of NH₃ from the metal nitride with acceptable kinetics,
- 3. metal oxide reduction temperature which can be contained in an industrial-scale, solar-heated reactor, ^{12,29} and that is near the optimal temperature of the reactor receiving solar radiation, ¹¹ see section "Gibbs free energy mapping of chemical elements,"
- 4. reactant regeneration using a sustainable reducing agent (preferably a gas³⁰) in economically attractive quantities, ^{12,25} see section "Process viability,"
- 5. absence of melting and boiling of the reactant to avoid pipe blocking, decreased reactant porosity, or cumbersome gas phase separations^{31,32} (for possible benefits of gaseous reaction *products*, see section "Step two: Formation of Mg_3N_2 "),
- 6. low to moderate amount of heat liberated by exothermic reactions at temperatures significantly below the temper-

ature of the metal oxide reduction (which absorbs this heat as solar radiation at high-temperatures dependent on the metal oxide stability), see section "Process viability,"

- 7. acceptable cost and availability of the reactive material and absence of toxicity to humans or the environment (in particular when biomass is used as reducing agent leading to the need for ash disposal, see Figure 1),
- 8. low number of chemical reactions to reduce complexity,³⁰
- 9. low number of separation steps due to an otherwise increased energy demand³⁰ (except for gas-liquid or gas-solid separations, see Figures 2 and 3),
 - 10. high ratio of solar energy used as process energy.

Theory and Modeling

A rationale to guide the reactant choice for nitride-based solar thermochemical NH₃ synthesis is proposed here. The simplified theoretical approach is based on the analysis of the Gibbs free energy of Eqs. 1–3 for various elements and the computation of chemical equilibrium compositions.

Gibbs free energy analysis

Molar Gibbs free energy of formation data (g_f) for various nitride/oxide pairs in the literature, ^{23,33} and used previously for similar computations, ³² were used here to perform a thermodynamic analysis computing the Gibbs free energy of reaction $(\Delta_{rxn}G)$

$$\Delta_{rxn}G = \sum_{i=\text{products}} n_i g_{f,i} - \sum_{j=\text{reactants}} n_j g_{f,j}$$
 (4)

where n are the mols of reactants j or products i, and $\Delta_{rxn}G$ in kJ/mol is negative if the reaction is thermodynamically favored at equilibrium in a closed system, i.e., the reaction yield exceeds a half-stoichiometric conversion of reactants. The behavior in an open (flow-through) system may differ substantially from thermodynamic predictions due to nonequilibrium situations including mass transfer. However, thermodynamics is used here as a starting point. The absolute error of g_f was estimated previously with \pm 3 kJ 32 and was taken as 2% of the value in kJ/mol. Error propagation was used to estimate the error of $\Delta_{rxn}G$ values computed.

Computation of equilibrium compositions

Assuming ideal gases and ideal condensed phase's vields³⁴

$$K_T = \exp\left[-\frac{\Delta_{ron}G}{RT}\right] = \prod_{i=\text{products}} n_i^{si} \prod_{i=\text{reactants}} n_i^{-sj} \left(\frac{p}{n}\right)^{si-sj}$$
 (5)

where K_T is the dimensionless equilibrium constant of a given reaction as a function of temperature (T) in K. R is the gas constant in kJ/mol/K, S_i and S_j are reaction stoichiometric coefficients, p is the total pressure in MPa, and n in mol is the total number of chemical species in the system, for simplicity taken as the arithmetic mean of the number of reactants and the number of products at complete conversion. Equations 4 and 5 together with the elemental mol balances of a given reaction system were solved numerically (MathCad 13) to yield the equilibrium composition as a function of T at 0.1 MPa (e.g., $MgO_{(s)} + C_{(s)} \leftrightarrow Mg_{(g)} + CO_{(g)}$ yielding $n_{CO} = (K_T^{1/2} - K_T)/(1 - K_T)$, carbide formation disregarded). It is indicated below when $\Delta_{TM}G$ calculations were extrapolated using a linear fit

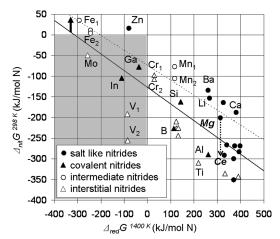


Figure 4. Utility of various elements for reactive NH₃ synthesis at atmospheric pressure: $\Delta_{rxn}G$ of metal nitridation (Eq. 2) vs. $\Delta_{rxn}G$ of carbothermal metal oxide reduction (Eq. 1). ^{23,33}

Selected nitride/oxide pairs (see "Thermochemical trends of metal nitride/oxide formation") are represented with the chemical symbol of the metallic constituent (subscript "2" marks lower nitrides, e.g., Fe₄N/Fe₂O₃ marked with Fe₂, Fe₂N/Fe₂O₃, marked with Fe₁). A complete description of the diagram is provided in additional online materials. The tradeoff region of negative $\Delta_{rxn}G$ for nitride formation and oxide reduction is the gray rectangular area. A linear fit is marked with a solid line. The computation is repeated for nitridation at 1,000 K (or lower, limited by available data), represented by a linear fit (dashed line, no individual data points shown).

 $(R^2$ generally > 0.999) (see other chemical equilibrium software such as STANJAN). Generally, g_f values were extrapolated for Mg₃N_{2(s)} > 1,300 K, for Mg_(g) > 2,000 K and for N₂ and CO > 2,500 K.

Thermochemical Trends of Metal Nitride/Oxide Formation

The following provides a thermodynamic analysis of 35 candidate nitride/oxide pairs (Li₃N/Li₂O, Be₃N₂/BeO, BN/ B₂O₃, Mg₃N₂/MgO, AlN/Al₂O₃, Si₃N₄/SiO₂, Ca₃N₂/CaO, ScN/Sc₂O₃, TiN/TiO₂, VN/V₂O₅, VN_{0.465}/V₂O₅, CrN/Cr₂O₃, Cr₂N/Cr₂O₃, Mn₅N₂/MnO, Mn₄N/MnO, Fe₂N/Fe₂O₃, Fe₄N/ Fe₂O₃, Co₃N/Co₃O₄, Zn₃N₂/ZnO, GaN/Ga₂O₃, Sr₃N₂/SrO, YN/Y_2O_3 , ZrN/ZrO_2 , NbN/Nb_2O_5 , Nb_2N/Nb_2O_5 , Mo_2N/Nb_2O_5 MoO₂, InN/In₂O₃, Ba₃N₂/BaO, CeN/CeO₂, HfN/HfO₂, TaN/ Ta₂O₅, Ta₂N/Ta₂O₅, Th₃N₄/ThO₂, ThN/ThO₂, and UN/UO₂) to guide the material selection for the reactive NH₃ synthesis. Focusing on a single element of this selection will furthermore require consideration of boiling points (see, e.g., Mg in the section "Promising elements for the nitride formation, and NH₃ liberation step"), kinetics (see section "Tradeoff elements") and different oxidation states of the metal (see, e.g., Mn(IV) to Mn(II) in the section "Step two: Formation of Mg₃N₂").

The analysis quantifies a correlation between thermodynamically favorable metal nitridation and NH₃ liberation via hydrolysis and undesirable strong metal-oxide bonds formed during hydrolysis. Nitride-based NH₃ synthesis may be realized with elements representing a tradeoff (the gray region in Figures 4 and 5) of these conflictive, thermochemical properties. However, these elements may cause only moderate NH₃ yields above 298 K (e.g., Mo, ³⁵ Figure 5) or require

activation of the N₂ before fixation (e.g., Zn,³⁶ Figure 4, see section "Promising elements for the NH₃ liberation and oxide reduction step").

An alternative approach, combining elements far outside this tradeoff region to manufacture a mixed material incorporating two desired reactive properties is conceivable. This will be explored selecting Mg or Ce for their high-expected yields of fixed nitrogen and liberated NH₃ on the one hand (Figures 4 and 5), and Cr, Mn, Fe or Mo for their tendency to form less stable metal oxides on the other hand (Figure 4).

Gibbs free energy mapping of chemical elements

Figure 4 shows $\Delta_{rxn}G$ of the nitridation reaction $(\Delta_{nit}G)$ at 0.1 MPa and 298 K as a function of $\Delta_{rxn}G$ of the carbothermal metal oxide reduction $(\Delta_{red}G)$ at 0.1 MPa and 1,400 K (reduction of Co_3O_4 was computed at 1,000 K due to availability of data). The classification of nitrides was taken from the literature.³⁷ Uncertainties of $\Delta_{rxn}G$ follow a normal distribution with on average \pm 4.01% of $\Delta_{nit}G$ or \pm 20.66% of $\Delta_{red}G$, respectively. Monte Carlo simulation yields the dimensionless slope of a linear regression with -0.40 ± 0.01 (Figure 4).

This trend suggests a necessary tradeoff. The stability of the oxide increases with increasing tendency of a metal to form nitrides. Recovering the metal from stable oxides unfortunately requires high-reduction temperatures aided by carbon as a chemical reducing agent.

Nitridation computed at 1,000 K (except Co_3N at 600 K, Zn_3N_2 at 700 K, and AIN, Ca_3N_2 , Cr_2N , CrN, Mn_4N , Mn_5N_2 , and Mo_2N at 800 K) is represented by a linear fit (dashed line, individual data points omitted for clarity, for details see Additional Supporting Materials online). Increasing the nitridation temperature to a kinetically reasonable value^{37,38} positions some elements that are attractive due to their low metal-oxygen bond energy, at a region with positive $\Delta_{nit}G$, i.e., nitride formation is not favored (Figure 2). Formation of these nitrides requires elevated N_2 pressure and/or nitrogen activation (e.g., plasma dissociation or other

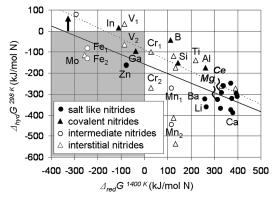


Figure 5. Utility of various elements for reactive NH₃ synthesis at atmospheric pressure: $\Delta_{rxn}G$ of metal nitride hydrolysis (Eq. 3) vs. $\Delta_{rxn}G$ of carbothermal metal oxide reduction (Eq. 1).^{23,33}

Selected nitride/oxide pairs are abbreviated such as in Figure 4. A complete description of the diagram is provided in additional online materials. The tradeoff region of negative $\Delta_{rxn}G$ for NH₃ formation and oxide reduction is marked (gray rectangle). A linear fit is marked with a solid line. The computation is repeated for corrosion at 800 K (or lower, limited by available data), represented by a linear fit (dashed line, no individual data points shown).

activated N sources)³⁹ if the nitride is only stable at low temperatures. Low temperatures do not allow useful nitride formation from N₂ due to decreased reaction kinetics.

Plotting $\Delta_{rxn}G$ for hydrolysis ($\Delta_{hvd}G$, \pm 19.43% average uncertainty) at 0.1 MPa and 298 K vs. $\Delta_{red}G$ yields the dimensionless slope of a linear regression with $-0.45~\pm$ 0.03 (Figure 5). A correlation similar to that in Figure 4 is observed: Elements forming an undesirably strong bond with oxygen tend to liberate NH₃ on nitride hydrolysis. Increasing the hydrolysis temperature 37,38 decreases the tendency for formation of NH₃ and favors undesirable N₂ formation (computed at 800 K, except Co₃N at 600 K, and Zn₃N₂ at 700 K).

Tradeoff elements

Metals that are — at the computed temperatures — elements of both tradeoff regions (Figures 4 and 5), V, Ga, and Mo are only of limited attractiveness for the investigated reaction cycle due to physical material properties and reaction kinetics. Carbothermal reduction of V₂O₅ would require precise temperature control to conduct the initial reduction of V(V) to V(IV) at below 943 K, the melting point of V₂O₅. More importantly, V reduces N₂ only slowly (20–25 h at red glow²⁰), and hydrolysis of the vanadium nitrides will results in low NH₃ yields (Figure 5). Nitridation kinetics of Ga and Mo dictate N2 reduction at above or near the decomposition temperatures of the nitrides (ca. 919 K for GaN or 1115 K for Mo₂N²³) leading to the need for increased partial N₂ pressures (reportedly 6 MPa for Mo²⁰ and on the order of GPa for Ga^{36,40}).

Promising elements for the nitride formation and NH₃ liberation step

Elements with high $\Delta_{red}G$ (and relatively low $\Delta_{nit}G$ and $\Delta_{hvd}G$) values (Figure 4 and 5) such as the highly electropositive Li, Mg, Ca, Ba and Ce form salt-like nitrides (criteria 1, see "Desirable material properties of the reactant" section). These nitrides are composed mainly of metal cations and N^{3-} anions. Hydrolysis of these materials forms NH_3 readily and rapidly 37,38 (criteria 2), but also highly stable oxides (violating criteria 3 and 6).

Regenerating Li₃N from LiOH formed during hydrolysis²⁰ is further complicated by the low melting point of LiOH at 744 K, which would likely result in undesirable vapor formation of reactants and products at atmospheric pressure during the oxide reduction²³ (violating criteria 5).

MgO is a solid and abundant material (criteria 5 and 7). Due to increased entropy values when forming gases, the reaction equilibrium for carbothermal reduction of MgO favors Mg vapor formation at above about 2,100 K.²³ In an open (nonequilibrium) system carbothermal reduction of MgO at a molar ratio of MgO/C of 1/2 was demonstrated successfully yielding 50 mol % Mg after 30 min at 1,823 K when using wood-derived charcoal as reducing agent. 41 Similar to MgO, reduction of CaO, BaO and CeO2 forming nitrides requires carbon and relatively high temperatures (Figure 4). Carbothermal reduction of CaO and BaO in the presence of N₂ suppresses the nitride formation completely and has been reported to yield cyanide-like compounds20 (violating criteria 8). This difficulty to form the nitride directly can be expected for Mg-based reactants as well and is the following focus (see section "Step two: Formation of Mg_3N_2 ").

The utility of Al for the nitride-based NH₃ synthesis has been demonstrated successfully (see "Introduction"). 10,24-26 Intermittent operation and containment of temperatures above 2,000 K required for Al₂O₃ reduction in a large-scale, nonequilibrium reactor will likely require refractory construction materials that constitute a crucial capital cost and construction feasibility factor. 12,20,21 Also, liberation of NH₃ from the highly corrosion-resistant AlN requires high temperatures and, thus, rapid quenching of the NH₃ liberated to prevent decomposition. The utility of Ti can be expected to be comparable to that of Al. The carbothermal reduction of TiO₂ may proceed at slightly lower temperatures than those required for the reduction of Al₂O₃ (Figures 4 and 5). However, hydrolysis of TiN requires high temperatures and appears to yield less NH₃³⁶ than the hydrolysis of AlN (Figure 5).

Promising elements for the NH₃ liberation and oxide reduction step

Oxides of elements with low $\Delta_{red}G$ (and relatively low $\Delta_{hvd}G$) values, e.g., Fe, Zn and Mo, can be reduced at below 2,200 K without carbon²³ (criteria 4) or at significantly lower temperatures with carbon or H2 as reducing agent (cri-

Metals of this group tend not to react with 0.1 MPa N₂ (e.g., Fe^{20} and $Zn^{19,20}$) or show low-nitridation yields (e.g., Mo³⁸) (violating criteria 1). NH₃ synthesis using Zn₃N₂ has been proposed previously.⁴² The high ratio of ionic bonding in $Zn_3N_2^{37}$ and the thoroughly studied thermal dissociation of ZnO via solar radiation¹¹ are attractive. However, N₂ fugacities in equilibrium with Zn₃N₂ and Zn metal are (dependent on temperature) on the order of TPa^{36,43} leading to the need for prohibitively high pressurization of N2 gas when forming Zn_3N_2 from its elements.

Doping a reactant from the first group (e.g., Mg) with an element from this group (e.g., Fe) may aid in decreasing the oxide reduction temperature of a composite material. 31,44-48 Whether this decreases the stability of the ternary nitride⁴⁹ relative to the nitride of the first group metal deserves attention when manufacturing a selected material.

Promising elements for the nitride formation and oxide reduction step

Among the remaining elements with intermediate values of $\Delta_{red}G$ (see also section "Tradeoff elements"), B, Si, V, Ga, and In have undesirably low-melting points or form undesirable volatile oxides or hydroxides²⁵ (violating criteria 5). Perhaps determined by the ionization potential of the metal and the degree of incompleteness of the d-electron orbitals the nitrides of this group are reported to yield only traces of NH_3 upon hydrolysis. 19,20,37,50

The presence of Cr⁵⁰ or Mn in a reactant from the first group might be used to aid the oxide reduction of this element. Whether this affects the ability of the composite reactant to liberate nitrogen in form of NH3 deserves attention when selecting a dopant from this group.

Mixed Reactants for Thermochemical NH₃ **Synthesis**

The properties of elemental nitrogen³⁹ appear to result in a tradeoff in the chemistry of reactive NH3 synthesis. The high-triple bond energy of the N₂ molecule yields small values of Gibbs free energy for a metal nitride relative to Gibbs free energy values for the corresponding metal oxide.

Table 1. Overview of Thermochemical Concepts to Produce NH₃ from H₂O and N₂ at near Atmospheric Pressure (A) Relative to Mg, and (B) Relative to Fe

Reactant component for N₂ fixation and NH₃ liberation

Mg Advantages

- \bullet Mg breaks the N_2 triple bond and forms reactive N^{3-} ions (Mg_3N_2)
- Mg_3N_2 liberates NH_3 quickly via hydrolysis at 0.1 MPa and < 373 K
- abundant, cheap and non-toxic, decreased reactant-makeup costs Disadvantages, risks and unknowns
- MgO requires carbothermal reduction at ca. 2130 K (closed system)
- Mg₃N₂ decomposes at temperatures required for MgO reduction
- Intermediate Mg metal formation requires rapid product quenching

Ce A Advantages

- \bullet CeN directly from CeO $_2,$ C, and N_2 at ca. 2150 K (closed system) Disadvantages, risks and unknowns
- Decreased contribution of ionic bonding in CeN
- Uncertain NH3 liberation kinetics
- Increased costs for Ce reactant-makeup

Reactant component to aid metal oxide reduction

Fe Advantages

- Increased Mg₃N₂ yield (decreased MgO reduction temperatures)
- abundant, cheap and low toxicity

Disadvantages, risks and unknowns

- Catalyses NH₃ decomposition
- May reduce the concentration of N³⁻ in the reactant
- · Increased amount of reducing agent required

Cr, Mn, Mo B Advantages

- Contribute to N₂ fixation (Cr, Mn) and NH₃ liberation (Mo)
- Decreased catalytic NH3 decomposition activity

Disadvantages, risks and unknowns

- Decreased abundance (increased reactant-makeup costs)
- Increased oxide stability (decreased yield of Mg₃N₂) (Cr, Mn)
- Increased oxide volatility (Mo)

Zn ^B Advantages

 Mg/Zn vapor formation may aid two-step nitridation of Mg at decreased temperatures

Disadvantages, risks and unknowns

• Rapid quenching of reaction products required

Therefore, high-metal nitridation yields correlate with formation of highly stable metal oxides formed during hydrolysis of the nitride for NH₃ formation. Analogously, due to the low-electron affinity of nitrogen only the most electropositive elements show a high ratio of ionic bonding⁴⁹ correlating with desirable high yields of NH₃ formation and undesirable stable metal-oxygen bonding.

The resulting quandary of obtaining reasonable process conditions with a single chemical element may be resolved by intimately combining two elements with different desired reactant properties in close contact. This has been applied successfully for reactants for solar thermochemical H_2O or CO_2 splitting, 31,44,48 catalysts for NH_3 synthesis, 45,46 and Li-air batteries, 47 and is explored here for Mg-based reactants. From the discussed elements Mg was chosen due to its high potential to reduce N_2 to $2N^{3-}$ and due to the high stability of the formed nitride relative to those formed by Li or Ba for instance (Figure 4). To fix nitrogen in the solid state (in form of a salt-like nitride) at the temperatures required for the oxide reduction step, Ce is proposed as alternative to Mg. Conclusions are summarized in Table 1.

Step one: Reduction of MgM_nO_4 ($M_n = Cr_2$, Fe_2 , Mo) reactants

Mg(OH)₂ formed during hydrolysis of Mg₃N₂ decomposes at elevated temperatures into highly stable MgO. Reduction of MgO in a closed system requires carbon as reducing agent and technically unsuitable high temperatures of about 2,130 K (Figure 6). Carbothermal reduction of Cr_2O_3 on the other hand is favored thermodynamically at above about 1,500 K (Figure 6). Also, Cr_2O_3 can be reduced with a gaseous reducing agent (criteria 4) and solar radiation. A material such as $MgCr_2O_4$ (i.e., $MgO^*Cr_2O_3$) may be reduced at temperatures significantly below 2,130 K^{31,44,48} (Figure 6).

Computations are based on g_f values for oxides of the spinel group. These stable compounds⁵¹ have increased values of g_f^{23} relative to the pure metal oxides. Therefore, the presence of a transition metal may allow the reduction of MgO at decreased temperatures due to an increased amount of oxidized reducing agent formed or due to reduction at the solid-solid MgO/transition metal oxide particle boundary. Possible formation of carbides (which tend to convert to oxides during the hydrolysis step) is disregarded at this point. Replacing Cr₂O₃ with Fe₂O₃ or MoO₃ (not shown, see "Thermochemical trends of metal nitride/oxide formation"), respectively, yields $\Delta T_l/\Delta T_h$ values (Figure 6) for the three mixed materials in the range of 0.49-0.98. If such a decrease in the oxide reduction temperature could be realized even partially than the costs for reactor construction materials required to physically contain the reaction temperature could be decreased significantly.

Step two: formation of Mg_3N_2

 Mg_3N_2 decomposes (Figure 7B) below the temperature required for carbothermal reduction of MgO (Figure 7A) causing low yields of the nitride when formed directly from the oxide at equilibrium (Figure 8).

This offers the possibility to conduct the NH₃ synthesis cycle in three steps (criteria 1 but violating criteria 8). These are (Figure 2): Carbothermal reduction of MgO_(s) forming Mg_(g) (Figure 7A), nitridation of a fine Mg_(s) powder at decreased temperatures yielding Mg₃N_{2(s)} (Figure 7B), and hydrolysis of Mg₃N_{2(s)} recycling MgO_(s) and yielding NH₃ (see "Step three: Hydrolysis of Mg₃N₂ yielding NH₃"). To avoid product recombination during the oxide reduction step this three-step process requires rapid quenching of the Mg/CO vapor. ^{11,30} A transition metal oxide forming a metal vapor during its reduction (e.g., ZnO) may possibly serve to lower the reduction temperature of the Mg-based reactant (Table 1).

To form the nitride directly from the oxide (criteria 8) one may attempt either to decrease the temperature required for the oxide reduction step or to increase the stability of the nitride at elevated temperature. The first approach (using

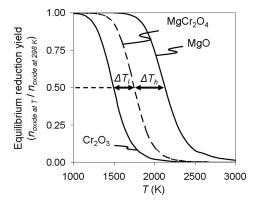


Figure 6. Carbothermal reduction of Cr₂O₃ (extrapolated above 1,800 K), MgO, and MgCr₂O₄ (extrapolated above 2,000 K) to the metal.

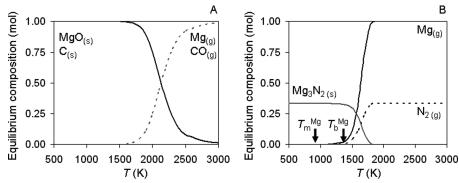


Figure 7. Chemical equilibrium composition of two-step MgO to Mg₃N₂ conversion (endothermic MgO reduction at high temperatures and exothermic nitridation of the condensed metal at decreased temperatures). Melting (T_m) and boiling (T_b) points of Mg are marked.

reactant doping with transition metals) is demonstrated in the previous section. The theoretical maximum yield of Mg₃N₂ via carbothermal reduction in the presence of N₂, and when introducing various transition metals into the magnesium oxide is shown in Figure 8. Addition of Fe₂O₃ for instance yields at least theoretically at 1,300 K about 64.21 mol % Mg in form of solid Mg₃N₂, 1.02 mol % Mg in form of liquid Mg and the balance solid MgFe₂O₄ (see also the additional online materials). Formation of carbides and transition metal nitrides (as expected for Cr and Mo) is for simplicity disregarded. The increased yield of Mg₃N₂ using Fe or Mo as a component for Mg-based reactants has to be weighed against the low vapor pressure of MoO₃²³ (criteria 5), the costs for Mo makeup (criteria 7), and the undesirable catalytic properties of Fe in NH3 formation and decomposition (criteria 2).

Alternatively, an approach to stabilizing the metal nitride is shown in Figure 4, indicating (dotted arrow) a significant decrease in $\Delta_{nit}G$ by -91.3 kJ/mol N when substituting Mg with Ce. This modification does only slightly increase $\Delta_{red}G$ (+15.9 kJ/mol N) and $\Delta_{hyd}G$ (+32.5 kJ/mol N) (Figures 4 and 5) (criteria 1, 2, and 8). The increased stability of CeN will likely increase the yield of nitrogen in the solid state during the high temperature oxide reduction step circumventing the intermediate formation of a metal phase (Figure 8). The nitride possesses a significant degree of ionic bonding and is expected to liberate sufficient quantities of NH3 when hydrolyzed.²⁰

В

The temperature required for the direct conversion of CeO₂ to CeN (50 mol % conversion in a closed system at about 2,150 K) might be decreased in a similar way as discussed above for Mg. Due to a limited amount of data for ternary Ce compounds Figure 9 shows an Ellingham diagram of Ce and Mn oxides using carbon or H₂ as reducing agent. The diagram illustrates the possible presence of various oxidation states of Ce and Mn compounds. H2 may be used to generate lower metallic oxidation states (criteria 4). Metals in lower oxidation states may aid the reduction of metals in higher oxidation states, that is, leading to oxygen transfer from Ce to Mn atoms. However, the reduction of Ce(III) to

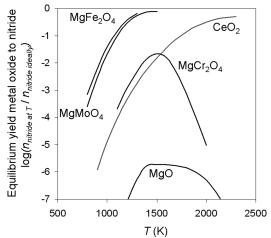


Figure 8. Direct conversion of selected metal oxides to nitrides (i.e., Mg₃N₂ or CeN; the yield of CeN from CeO2, marked with CeO2, is extrapolated above 2000 K).

The presence of a transition metal oxide in an alkaline earth metal-based reactant for NH3 synthesis may allow oxide reduction at decreased temperatures and, thus, increased nitridation yields.

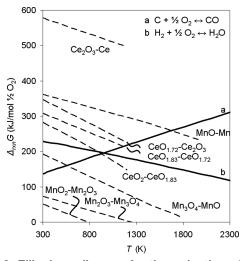


Figure 9. Ellingham diagram for the reduction of oxides of Ce or Mn, respectively.

Removal of 1 atom O from an oxide to form a lower oxidation state (e.g., MnO-Mn abbreviating the equilibrium between MnO and Mn $+ \frac{1}{2}$ O₂) occurs spontaneously if its $\Delta_{rxn}G$ reaches 0, or if its $\Delta_{rxn}G \leq \Delta_{rxn}G$ of an oxygen absorbing reaction such as combustion of C or H₂ (a or b).

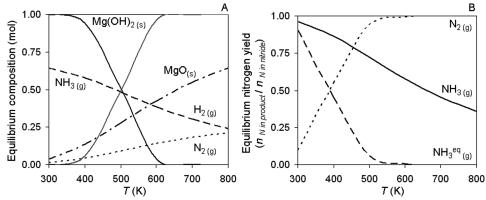


Figure 10. Formation of NH₃ at 0.1 MPa via hydrolysis of Mg₃N₂ (Mg(OH)₂ extrapolated above 500 K) (A) and equilibrium yield of N in the gas phase during the hydrolysis if NH₃ is not withdrawn (NH₃^{eq}) from the system and quenched (B).

the metal (Figure 9) or its conversion to CeN (Figure 8) requires high temperatures and a solid, carbonaceous reducing agent such as biomass or charcoal causing ash formation and, thus, the need of some reactant makeup. Technical advantages of Ce for the overall cycle studied here have to be weighed against criteria 4 and 7.

Step three: Hydrolysis of Mg₃N₂ yielding NH₃

To close the cycle, Mg₃N₂ hydrolyzed at 368 K yields NH₃ quickly.²² Formation of NH₃ at this temperature and at 0.1 MPa total pressures would avoid the need for gas compression since NH₃ is thermodynamically stable at these conditions. The exothermic heat of reaction liberated at near this temperature would be of low value (see criteria 6).

Gibbs free energy analysis shows that hydrolysis of Mg₃N₂ (Fig. 10A) forming Mg(OH)₂, N₂ and H₂ is favored at equilibrium over NH₃ formation at above 400-500 K (Fig. 10B). To account for this formation of N2, the amount of NH₃ liberated from the nitride is estimated here based on the ratio of the equilibrium constants for NH3 formation relative to N₂ formation decreasing the yield of NH₃ when increasing the hydrolysis temperature (Figure 10A). This illustrates that NH₃ formation via nitride hydrolysis is most promising if nitrides are employed which liberate NH3 at intermediate temperatures and in a system open to mass exchange (to avoid the decomposition shown in Figure 10B). Maximized NH₃ yields might be promoted by reducing opportunities for surface diffusion of NH₃, and by carefully minimizing any resistance to the mass transfer of NH3 away from the metal reactant.

The presence of transition metals in the reactant may reduce the ratio of ionic bonding within the nitride and may decrease the yield of NH₃. Bonding in ternary nitrides is, however, not well-understood.⁴⁹ Future research quantifying the bonding nature in mixed or ternary nitrides and assessing the catalytic contribution of nitride components to the decomposition of the NH₃ formed^{20,45,46} will further the development of a composite reactant for the solar thermochemical NH₃ synthesis near ambient pressure.

Conclusions and Outlook

The thermodynamic equilibrium of the Haber-Bosch reaction — conducted catalytically at 700-900 K — dictates the need for high partial pressures of the reactants, that is, about 22.5 MPa H₂ and 7.5 MPa N₂. Separating the N₂ reduction step from the nitrogen protonation step offers the possibility to conduct both steps at different temperatures, and thereby favorable equilibrium positions at 0.1 MPa. This may avoid the need for sophisticated high-pressure utilities and decrease the reliance on fossil fuels for electricity generation of the conventional NH₃ synthesis.

Using water as source of hydrogen and concentrated solar radiation for process heat leads to a process (Eqs. 1-3) that converts solar energy to chemical energy, stored in NH₃, CO, and electricity. The dependency on the inherent byproduction of electricity may be addressed by control of the reactant composition: The higher the heat of reaction that is absorbed in the endothermic metal oxide reduction step at high temperature (from solar radiation), the higher the heat of reaction of the exothermic NH₃ formation at low temperature (to electric energy byproduct). This thermochemical analysis quantifies furthermore: The higher Gibbs free energy of the metal oxide reduction (need for high reduction temperatures), the lower Gibbs free energy of the NH₃ liberation (high NH₃ yields) (Figure 5).

Given the unfavorable kinetics of the N₂ reduction step of single elements representing a tradeoff of these conflicting properties (V, Ga and Mo) and given the quick formation of NH₃ via hydrolysis of salt-like nitrides (e.g., Li, Mg, Ba and Ce), nitrides with high ionic contribution to the metal-nitrogen bond have been focused here. From this group, Mg and Ce have been selected due to the inferior thermodynamic stability of Li and Ba nitrides (Figure 4), and presumably complicated processing of Li-based reactants (highly volatile oxides and a hydroxide with a low melting point). A qualitative summary of this thermochemical analysis is given in Figure 11.

In principle, MgO may be reduced carbothermally to a metal vapor formed at near 1,800 K in a system open to mass exchange. The condensed metal could, thereafter, be used as electron donor for the N2 reduction step. However, the conceivable direct conversion of MgO to Mg₃N₂ at decreased temperatures (required due to the decomposition of the nitride at elevated temperatures) is more attractive from a practical perspective since this would greatly simplify processing (rapid quenching to suppress the oxidation of Mg by CO, handling a metal vapor, reactor materials and design for high temperatures). The potential to decrease the

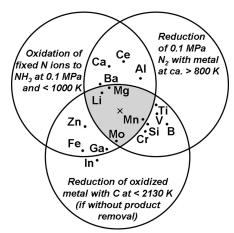


Figure 11. Primary demands of the solar thermochemical NH₃ synthesis on the reactive materials and qualitative summary (see kinetic effects and limited thermochemical data at elevated temperatures above) of the related thermochemical properties for single elements.

The metal oxide reduction temperature was chosen for guidance only. Increasing this temperature or removing reaction products will allow the reduction of all oxides shown. The ideal combination of thermochemical properties is marked with "x".

reduction temperature of the metal oxide by doping with transition metals has been employed for solar thermochemical H₂O or CO₂ cleavage and has been explored here for the Mg-based (i.e., MgCr₂O₄, MgFe₂O₄, or MgMoO₄) solar thermochemical NH₃ synthesis. Future work needs to address experimental verification of this concept (nitride formation near 1,500 K), and of the possibility to increase the nitride stability at higher temperatures by using Cebased reactants.

Acknowledgments

We thank Dr. Leigh Murray and Dayou Jiang for their assistance with statistical verification. This material is based on work supported by National Science Foundation Grant # 0903701: "Integrating the Socioeconomic, Technical, and Agricultural Aspects of Renewable and Sustainable Biorefining Program, awarded to Kansas State University". Funding by the Center for Sustainable Energy, Kansas State University is kindly acknowledged.

Literature Cited

- 1. Smil V. Population growth and nitrogen: An exploration of a critical existential link. *Population Develop Rev.* 1991;17(4):569–601.
- Schnepf R, Yacobucci BD. Renewable Fuel Standard (RFS): Overview and Issues. Congressional Research Service; 2010.
- Kramer DA. Nitrogen (fixed) Ammonia. US Geological Survey, Mineral Commodity Summaries; 2003:118–119.
- Rafiqul I, Weber C, Lehmann B, Voss A. Energy efficiency improvements in ammonia production - perspectives and uncertainties. *Energy*. 2005;30(13):2487–2504.
- Ritter SK. The Haber-Bosch reaction: An early chemical impact on sustainability. Chem Eng News. 2008;86(33):53.
- Kirova-Yordanova Z. Exergy analysis of industrial ammonia synthesis. Energy. 2004;29(12–15):2373–2384.
- Thomas G, Parks G. Potential roles of ammonia in a hydrogen economy, a study of issues related to the use ammonia for on-board vehicular hydrogen storage. US Dept of Energy; 2006. http://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf (retrieved 12/2011).
- Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK. Towards an ammonia-mediated hydrogen economy? *Catal Today*. 2006;111(1–2):140–144.

- Reiter AJ, Kong SC. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. *Fuel*. 2011;90(1):87–97.
- Gálvez ME, Halmann M, Steinfeld A. Ammonia production via a two-step Al₂O₃/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses. *Ind Eng Chem Res*. 2007;46(7):2042–2046.
- Steinfeld A, Weimer AW. Thermochemical production of fuels with concentrated solar energy. Optics Express. 2010;18(9):A100–A111.
- 12. Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. *Progr Energy Combust Sci.* 2003;29(6):567–597.
- Pool JA, Lobkovsky E, Chirik PJ. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. *Nature*. 2004;427(6974):527–530.
- Lerch M, Janek J, Becker KD, Berendts S, Boysen H, Bredow T et al. Oxide nitrides: From oxides to solids with mobile nitrogen ions. *Progr Solid State Chem.* 2009;37(2–3):81–131.
- Skodra A, Stoukides M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics. 2009;180(23–25):1332–1336.
- Kongshaug G. Energy consumption and greenhouse gas emissions in fertilizer production. International Fertilizer Industry Association, Technical Conference, Marrakech, Morocco, 28 September-1 October; 1998.
- 17. http://www.worldcoal.org/resources/coal-statistics/(retrieved 12/2009).
- Haber F, van Oordt G. Über die Bildung von Ammoniak aus den Elementen. Z Anorg Chem. 1905;44:341–378.
- Lunge G. Coal-Tar and Ammonia. London: Gurney and Jackson; 1916
- Maxted EB. Ammonia and the Nitrides. London, UK: J. & A. Churchill; 1921.
- Sauchelli V. Fertilizer Nitrogen its Chemistry and Technology. New York, NY: Reinhold Publishing Corp; 1964.
- Glasson DR, Jayaweera SAA. Formation and reactivity of nitrides.2.
 Calcium and magnesium nitrides and calcium cyanamide. *J Appl Chem USSR*. 1968;18(3):77–83.
- Barin I, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin, Heidelberg, New York: Springer-Verlag; 1973.
- 24. Gálvez ME, Frei A, Meier F, Steinfeld A. Production of AlN by carbothermal and methanothermal reduction of Al₂O₃ in a N₂ flow using concentrated thermal radiation. *Ind Eng Chem Res.* 2009;48(1):528–533.
- Gálvez ME, Hischier I, Frei A, Steinfeld A. Ammonia production via a two-step Al₂O₃/AlN thermochemical cycle. 3. Influence of the carbon reducing agent and cyclability. *Ind Eng Chem Res*. 2008;47(7):2231–2237.
- Gálvez ME, Frei A, Halmann M, Steinfeld A. Ammonia production via a two-step Al₂O₃/AlN thermochemical cycle. 2. Kinetic analysis. *Ind Eng Chem Res.* 2007;46(7):2047–2053.
- Solar Millennium AG. The parabolic trough power plants Andasol 1 to 3. http://www.solarmillennium.de/upload/Download/Technologie/eng/Andasol1–3engl.pdf (retrieved 11/2011).
- Ramezan M, Skone TJ, ya Nsakala N, Liljedahl GN. Carbon dioxide capture from existing coal-fired power plants. National Energy Technology Laboratory, final report (original issue date, December 2006) 2007;DOE/NETL-401/110907.
- Murray JP, Steinfeld A, Fletcher EA. Metals, nitrides, and carbides via solar carbothermal reduction of metal-oxides. *Energy*. 1995;20(7):695–704.
- Perret R. Solar thermochemical hydrogen production research (STCH), Thermochemical cycle selection and investment priority. Sandia report SAND2011–3622, Sandia National Laboratories; 2011.
- Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. *J Mater Sci.* 2008;43(14):4714–4728.
- 32. Lundberg M. Model-calculations on some feasible 2-step water splitting processes. *Int J Hydrogen Energy*. 1993;18(5):369–376.
- Barin I, Knacke O, Kubaschewski O. Thermochemical Properties of Inorganic Substances. Berlin, Heidelberg, New York: Springer-Verlag; 1977 (suppl).
- 34. Scott Fogler H. *Elements of Chemical Reaction Engineering*. Upper Saddle River, NJ: Prentice Hall PTR; 2006.
- 35. Samsonov GV. *Handbook of the Physicochemical Properties of the Elements*. London, UK: Oldbourne Book Co; 1968.
- Juza R. Über die Nitride der Metalle der ersten großen Periode. Angewandte Chemie. 1945;58:25–30.
- Pierson HO. Handbook of Refractory Carbides and Nitrides. Westwood, NJ: Noyes Publications; 1996.

- 38. Glasson DR, Jayaweer SAA. Formation and reactivity of nitrides.I. Review and introduction. *J Appl Chem USSR*. 1968;18(3):65–77.
- DiSalvo FJ. New ternary nitrides. In: Nitrides and Oxynitrides, Proceedings of the Second International Symposium on Nitrides, Limerick, Ireland. 2000;325–326:3–9.
- Yamada T, Yamane H, Ohta T, Goto T, Yao T. Preparation of GaN crystals by heating a Li₃N-added Ga melt in Na vapor and their photoluminescence. *Crystal Res Technol*. 2007;42(1):13–17.
- Gálvez ME, Frei A, Albisetti G, Lunardi G, Steinfeld A. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions - Thermodynamic and kinetic analyses. *Int J Hydrogen Energy*. 2008;33(12):2880–2890.
- Kaiser K. Verf. zur gewinnung von zinknitrid und ammoniak. Z Angew Chem. 1914;27(2):481.
- 43. Wriedt HA. The N-Zn (nitrogen-zinc) system. Bull Alloy Phase Diag. 1988;9(3):247–251.
- 44. Roeb M, Müller-Steinhagen H. Concentrating on solar electricity and fuels. *Science*. 2010;329(5993):773–774.
- 45. Jacobsen CJH. Novel class of ammonia synthesis catalysts. *Chem Commun.* 2000(12):1057–1058.

- Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. *J Am Chem Soc.* 2001;123(34):8404–8405
- Jacoby M. Rechargeable metal-air batteries. Chem Eng News. 2010;88(47):29–31.
- 48. Scheffe JR, Li JH, Weimer AW. A spinel ferrite/hercynite water-splitting redox cycle. *Int J Hydrogen Energy*. 2010;35(8):3333–3340
- Gregory DH. Structural families in nitride chemistry. J Chem Soc Dalton Trans. 1999(3):259–270.
- Michalsky R, Pfromm PH. Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure. Solar Energy. 2011;85(11):2642–2654.
- El-Shobaky GA, Mostafa AA. Solid-solid interactions in Fe₂O₃/ MgO system doped with aluminum and zinc oxides. *Thermochim Acta*. 2003;408(1–2):75–84.

Manuscript received Jun. 30, 2011, and revision received Dec. 3, 2011.